Phosphorothioate modification of chimeric 2´-O-methyl RNA/ethylene-bridged nucleic acid oligonucleotides increases dystrophin exon 45 skipping capability and reduces cytotoxicity.
نویسندگان
چکیده
BACKGROUNDS Antisense oligonucleotide (AO)-mediated exon skipping is the most promising way to express internally deleted dystrophin in Duchenne muscular dystrophy (DMD), by correcting the reading frame of dystrophin mRNA. An antisense chimeric oligonucleotide consisting of 2´-O-methyl RNA and ethylene-bridged nucleic acid (ENA), targeting exon 45 of the dystrophin gene, AO85, has been shown to induce exon 45 skipping efficiently. Since phosphorothioate (PS)-modification of AO85 has never been explored, we produced a PS-modified AO85 (AO88) and examined its exon skipping capability and cytotoxicity. METHODS Exon 45 skipping activity was examined in primary muscle cells established from a DMD patient carrying a deletion of dystrophin exon 44. Cytotoxicity was assessed by MTT assay. RESULTS AO88 induced dystrophin exon 45 skipping from 50 nM. More than 90% of products lacked exon 45 at 400 nM. AO88 showed significantly higher exon skipping activity than AO85. The EC50 of AO88 was 94.8 nM, while EC50 of AO85 was 66.7 nM. Cytotoxicity was lower for AO88 than for AO85. CONCLUSION the PS-modified RNA/ENA chimera displayed stronger exon skipping activity and lower cytotoxicity than the phosphodiester-RNA/ENA chimera. AO88 has better potential for clinical use than AO85.
منابع مشابه
2′-O-Methyl RNA/Ethylene-Bridged Nucleic Acid Chimera Antisense Oligonucleotides to Induce Dystrophin Exon 45 Skipping
Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disease characterized by dystrophin deficiency from mutations in the dystrophin gene. Antisense oligonucleotide (AO)-mediated exon skipping targets restoration of the dystrophin reading frame to allow production of an internally deleted dystrophin protein with functional benefit for DMD patients who have out-of-frame deletions. After a...
متن کاملRational Design of Short Locked Nucleic Acid-Modified 2′-O-Methyl Antisense Oligonucleotides for Efficient Exon-Skipping In Vitro
Locked nucleic acid is a prominent nucleic acid analog with unprecedented target binding affinity to cDNA and RNA oligonucleotides and shows remarkable stability against nuclease degradation. Incorporation of locked nucleic acid nucleotides into an antisense oligonucleotide (AO) sequence can reduce the length required without compromising the efficacy. In this study, we synthesized a series of ...
متن کاملEvaluation of anhydrohexitol nucleic acid, cyclohexenyl nucleic acid and d-altritol nucleic acid-modified 2'-O-methyl RNA mixmer antisense oligonucleotides for exon skipping in vitro.
Antisense oligonucleotide (AO) mediated exon skipping has been widely explored as a therapeutic strategy for several diseases, in particular, for rare genetic disorders such as Duchenne muscular dystrophy (DMD). To date, the potential of anhydrohexitol nucleic acid (HNA), cyclohexenyl nucleic acid (CeNA) and altritol nucleic acid (ANA) has not been explored in exon skipping. For the first time,...
متن کاملSynthesis of a Morpholino Nucleic Acid (MNA)-Uridine Phosphoramidite, and Exon Skipping Using MNA/2'-O-Methyl Mixmer Antisense Oligonucleotide.
In this study, we synthesised a morpholino nucleoside-uridine (MNA-U) phosphoramidite and evaluated the potential of a MNA-modified antisense oligonucleotide (AO) sequences to induce exon 23 skipping in mdx mouse myotubes in vitro towards extending the applicability of morpholino chemistry with other nucleotide monomers. We designed, synthesised, and compared exon skipping efficiencies of 20 me...
متن کاملThe Dynamics of Compound, Transcript, and Protein Effects After Treatment With 2OMePS Antisense Oligonucleotides in mdx Mice
Antisense-mediated exon skipping is currently in clinical development for Duchenne muscular dystrophy (DMD) to amend the consequences of the underlying genetic defect and restore dystrophin expression. Due to turnover of compound, transcript, and protein, chronic treatment with effector molecules (antisense oligonucleotides) will be required. To investigate the dynamics and persistence of antis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Kobe journal of medical sciences
دوره 60 4 شماره
صفحات -
تاریخ انتشار 2015